URL dieses Beitrags:

Lesezeichen bei Google setzen Link auf Facebook teilen
Fachartikel aus MECHATRONIK 5/2018, S. 20 bis 21

Schunk

Hand in Hand mit dem Roboter

Nach der SVH 5-Fingerhand wurde nun auch der Co-act EGP-C Greifer für die Mensch-Roboter-Kollaboration von der DGUV zertifiziert. Fragen dazu beantwortet Prof. Dr. Markus Glück von Schunk und gibt abschließend einen Ausblick auf den Greifer von morgen.

Bild: Schunk
Prof. Dr.-Ing. Markus Glück ist Geschäftsführer für Forschung & Entwicklung der Schunk GmbH & Co. KG. (Bild: Schunk)

Weshalb ist Ihnen die Zertifizierung der einzelnen Komponente so wichtig, wenn doch in der Praxis die Anlage als Ganzes für den kollaborativen Betrieb zertifiziert werden muss?

Aktuell setzen sich sehr viele Anwender mit dem Thema MRK auseinander, wobei bislang nur wenige Applikationen im betrieblichen Umfeld realisiert sind. Das Thema ist für alle Beteiligten, sprich für die Hersteller von Robotern, End-of-Arm-Tools und Sensoren, für die Anwender, aber auch für die DGUV vergleichsweise neu. Unsere Erfahrung zeigt, dass der Weg zur Zertifizierung mitunter ziemlich herausfordernd sein kann, vor allem bei den ersten Applikationen ohne Erfahrungswerte. Genau hier setzen wir an: Zum einen begleiten wir Anwender mit dem interdisziplinären Know-how unseres Co-act-Teams, zum anderen minimieren unsere zertifizierten Komponenten den Aufwand bei der Zertifizierung des Gesamtsystems.

Warum ist der Prozess der Zertifizierung so aufwändig?

Damit die DGUV eine komplette Anlage für den MRK-Betrieb zertifiziert, muss sicher nachgewiesen sein, dass der Bediener bei einem Kontakt nicht verletzt wird. Hier greifen die Schutzprinzipien der DIN EN ISO 10218-1/-2 und DIN EN ISO/TS 15066 sowie die Maschinenrichtlinie, die vorschreibt, dass stets die Gefahr für den Menschen zu betrachten und die damit verbundenen Risiken zu bewerten sind. Es gilt also, sehr präzise zu analysieren: Welche Arbeitsräume existieren? Welche Risiken bestehen? Wo müssen Arbeitsräume eingeschränkt werden, um Verletzungen auszuschließen? Das geht nur, indem jede Applikation individuell betrachtet wird. Das braucht einfach Zeit und eine besondere Sorgfalt.

Gibt es Ängste in Bezug auf die Greifer für MRK-Anwendungen?

Bislang haben wir es noch nicht erlebt, dass Greifer für kollaborative Anwendungen größere Ängste bei Anwendern erzeugen. Vielmehr dominieren Neugierde und Begeisterung. Menschen testen intuitiv aus, wann die Sicherheitstechnologien anspringen und wie sich das System verhält.

Wo liegt dann die Herausforderung?

So komplex wie der Mensch, so komplex sind auch die Aspekte der MRK. Anders als bei herkömmlichen Anlagen, genügt es nicht, einfach nur die Norm zu erfüllen. Die Normen fordern zunächst nur, dass weder eine Maschine beschädigt noch ein Bediener ernstlich verletzt werden darf. Das reicht für den täglichen Einsatz jedoch bei weitem nicht aus. Vielmehr gilt es, den Menschen in den Mittelpunkt sämtlicher Überlegungen zu stellen. Der Werker muss dem Roboter vertrauen. Der Greifer muss sich dem Menschen entsprechend anpassen – nicht umgekehrt.

Stößt so ein Greifer dann nicht an die Grenzen der Komplexität?

Komplexe Systeme müssen heutzutage längst nicht mehr kompliziert sein. Nehmen Sie das Smartphone: Kinder gehen vollkommen selbstverständlich mit den eingebauten Technologien um, ohne darüber nachzudenken, wie das Gerät funktioniert. Neue Apps werden einfach intuitiv ausprobiert und im besten Fall ins Standardrepertoire aufgenommen. Genau das ist das Zielbild, das wir mit der Technologiestudie des Co-act JL1 Greifers verfolgen: Er soll trotz oder besser gesagt gerade aufgrund seiner Komplexität im Innern von außen möglichst intuitiv nutzbar sein.

Wie sieht die Sicherheitsaura beim Co-act JL1 Greifer genauer aus?

Die verbaute Sensorik registriert Annäherungen von Menschen und ermöglicht eine situationsabhängige Reaktion, ohne dass Mensch und Roboter sich berühren. Sie ist in drei Zonen aufgeteilt: Jeder Finger für sich sowie das Gehäuse bilden jeweils eine eigene Zone und detektieren unabhängig voneinander Annäherungen des Menschen. Über die in den Greifer integrierte, frei programmierbare Steuerung können die entsprechenden Reaktionen vorverarbeitet und als Signal an die SPS geschickt werden. Die einzelnen Reaktionsmechanismen lassen sich individuell definieren und auf die jeweilige Anwendung abstimmen.

Welche Technologie steckt dahinter?

Technisch nutzen wir mehrere Systeme parallel: Zunächst einmal eine kapazitive Sensorik. Sobald etwas stark Wasserhaltiges in dieses Feld eindringt, wird es detektiert. So ist es möglich, die Annäherung von Bauteilen oder anderen Greifern von der Annäherung von Fingern, Händen oder Armen zu unterscheiden. Im Gegensatz zu den am Markt etablierten Möglichkeiten zur Arbeitsraumüberwachung, die eher ein weiteres Umfeld abdecken, ermöglicht die kapazitive Sensorik die unmittelbare Detektion eines engen Radius von 20 cm und damit bevor es überhaupt zu einem Kontakt kommt. Eine zweite Ebene bildet die Kraft-Momenten-Sensorik, die im Flansch verbaut ist. Diese registriert, wenn unerwartete Kraftwirkungen auftauchen. Sie dient also dazu, eine effektive Kollision zu bemerken und den Roboter zu stoppen. Außerdem lassen sich Zusatzfunktionen realisieren, beispielsweise können wir ermitteln ob ein Glas voll oder leer ist. Taktile Sensoren schließlich bilden die dritte Ebene: Vergleichbar mit dem menschlichen Tastsinn erfassen diese ortsaufgelöst sowohl einzelne Berührungen als auch großflächige Druckverteilungen. Mithilfe intelligenter Algorithmen können Objekte beim Greifen identifiziert und der Griff reaktiv angepasst werden. Es lässt sich also beim Greifvorgang erkennen, ob der Gegenstand optimal gegriffen wurde oder ob korrigiert werden muss.

Ausblick: Was sollen Greifer wie der Co-act JL1 morgen können?

Konkret stehen zwei Aspekte im Vordergrund: Die Unterstützung des Menschen und das Handling unterschiedlicher Teilevarianten im Wechsel. Mithilfe eigens entwickelter Greifstrategien stimmt der Greifer sein Verhalten in Echtzeit darauf ab, welches Werkstück oder ob womöglich eine menschliche Hand gegriffen wird. Hierfür nutzt der Greifer eine dezentrale Steuerungsarchitektur mit parallel ausgeführten Diagnose- und Sicherheitsfunktionen. Langfristig gehen wir davon aus, dass Greifer ähnlich wie die menschliche Hand selbständig in der Lage sein werden, die Lage und Orientierung der gegriffenen Bauteile in sechs Freiheitsgraden zu manipulieren. Wir sprechen in diesem Zusammenhang von der Technologie der lnhand-Calibration. Damit werden sich sehr flexible, autonome Greifszenarien realisieren lassen.